Dictionary Optimization for Block-Sparse Representations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations

Non-parametric Bayesian techniques are considered for learning dictionaries for sparse image representations, with applications in denoising, inpainting and compressive sensing (CS). The beta process is employed as a prior for learning the dictionary, and this non-parametric method naturally infers an appropriate dictionary size. The Dirichlet process and a probit stick-breaking process are als...

متن کامل

Dictionary Learning with Large Step Gradient Descent for Sparse Representations

This work presents a new algorithm for dictionary learning. Existing algorithms such as MOD and K-SVD often fail to find the best dictionary because they get trapped in a local minimum. Olshausen and Field’s Sparsenet algorithm relies on a fixed step projected gradient descent. With the right step, it can avoid local minima and converge towards the global minimum. The problem then becomes to fi...

متن کامل

Thresholded Smoothed- (sl0) Dictionary Learning for Sparse Representations

In this paper, we suggest to use a modified version of Smoothed0 (SL0) algorithm in the sparse representation step of iterative dictionary learning algorithms. In addition, we use a steepest descent for updating the non unit columnnorm dictionary instead of unit column-norm dictionary. Moreover, to do the dictionary learning task more blindly, we estimate the average number of active atoms in t...

متن کامل

Thresholded smoothed-l0(SL0) dictionary learning for sparse representations

In this paper, we suggest to use a modified version of Smoothed-!0 (SL0) algorithm in the sparse representation step of iterative dictionary learning algorithms. In addition, we use a steepest descent for updating the non unit columnnorm dictionary instead of unit column-norm dictionary. Moreover, to do the dictionary learning task more blindly, we estimate the average number of active atoms in...

متن کامل

Optimization Algorithms for Sparse Representations and Applications

We consider the following sparse representation problem, which is called Sparse Component Analysis: identify the matrices S ∈ IRn×N and A ∈ IRm×n (m ≤ n < N) uniquely (up to permutation of scaling), knowing only their multiplication X = AS, under some conditions, expressed either in terms of A and sparsity of S (identifiability conditions), or in terms of X (Sparse Component Analysis conditions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2012

ISSN: 1053-587X,1941-0476

DOI: 10.1109/tsp.2012.2187642